vector_store = SupabaseVectorStore( postgres_connection_string=connectionString, collection_name="llama_demo", ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents(documents, storage_context=storage_context) filters = MetadataFilters(filters=[ExactMatchFilter(key="workspaceId", value="25juldeplo482af4cd83")]) retriever = index.as_retriever(filters=filters) ans = retriever.retrieve("query?")
vector_store = SupabaseVectorStore( postgres_connection_string=connectionString, collection_name="llama_demo", ) # for second iteration when you have already created the indexes in the first run index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
ge='OpenAI API response' path=https://api.openai.com/v1/embeddings processing_ms=80 request_id=12405e2561e906cf281aefb36c97809f response_code=200 /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/vecs/collection.py:182: UserWarning: Query does not have a covering index for IndexMeasure.cosine_distance. See Collection.create_index warnings.warn( DEBUG:llama_index.indices.utils:> Top 0 nodes: