from llama_index.llms.deepseek import DeepSeek llm = DeepSeek(model="deepseek-chat", api_key=os.getenv('DEEP_SEEK_API_KEY')) Settings.llm = llm Settings.embed_model = OpenAIEmbedding(model=self.embedding) Settings.node_parser = node_parser reranker = LLMRerank(top_n=self.similarity_top_k,) nodes = reranker.postprocess_nodes(nodes, QueryBundle(f"Food items like {item_name}. Seperate item from adjectives and quantities.")
you have to generate the following items in a predefined structure.
if "deepseek" in self.model: # self.llm = DeepSeek(model=self.model, api_key=os.getenv('DEEP_SEEK_API_KEY')) -> this is bugged self.llm = OpenAILike(model="deepseek-chat", api_base="https://api.deepseek.com/v1", api_key=os.getenv('DEEP_SEEK_API_KEY'), is_chat_model=True)
from llama_index.llms.deepseek import DeepSeek
from llama_index.llms.openai_like import OpenAILike
RETRY_COUNT = 3 while RETRY_COUNT > 0: try: response = query_engine.query(prompt + item_name) break except Exception as e: print(f"Error querying: {e}") RETRY_COUNT -= 1 if not response: raise Exception("LLM returned nothing even after retrying")