Find answers from the community

Updated 2 months ago

```py

Plain Text
import chromadb
from llama_index import VectorStoreIndex
from llama_index.vector_stores import ChromaVectorStore
from llama_index.storage.storage_context import StorageContext
from llama_index.llms import LlamaCPP
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext

# initialize client
db = chromadb.PersistentClient(path="./chroma_db")
llm = LlamaCPP(
    # You can pass in the URL to a GGML model to download it automatically
    # optionally, you can set the path to a pre-downloaded model instead of model_url
    model_path="./models/em_german_13b_v01.Q8_0.gguf",
    temperature=0.1,
    max_new_tokens=4048,
    # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
    context_window=8128,
    # kwargs to pass to __call__()
    generate_kwargs={},
    # kwargs to pass to __init__()
    # set to at least 1 to use GPU
    # model_kwargs={"n_gpu_layers": 1},
    # transform inputs into Llama2 format
    # messages_to_prompt=messages_to_prompt,
    # completion_to_prompt=completion_to_prompt,
    verbose=True,
    
)
# get collection
chroma_collection = db.get_or_create_collection("quickstart")

# assign chroma as the vector_store to the context
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
service_context = ServiceContext.from_defaults(llm=llm)

# load your index from stored vectors
index = VectorStoreIndex.from_vector_store(
    vector_store, storage_context=storage_context, service_context=service_context
)

# create a query engine
query_engine = index.as_query_engine()
response = query_engine.query("Hallo, wie geht es dir?")
print(response)


Gives me a Connection error. Seems like its trying to work with OpenAI. Is there a way to make it work w my Model?
W
T
L
54 comments
You have only defined the llm part in the service_context . It requires embedding model source as well. Since it is not defined it is going to OpenAI for it.

Just add the following and it should work!!
Plain Text
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")

It will use the default opensource model for embedding this way.

For more: https://docs.llamaindex.ai/en/stable/module_guides/models/embeddings.html#local-embedding-models
Okay. If i define it it gives me a "Empty Response", Is that when it doesnt know wjat to say?
If the response returns empty response, Can you check if the source nodes contain anything.

You can check via print(response.source_nodes)
If it is coming empty then it means the embedding model is unable to retrieve from the vectors
AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
Empty Response
[]


It gives me that
So yea, its empty
So meaning the DB is borked? Or does it just not have Info abt what i asked?
How did you created the vector store, IN the first place? Have you fed any data in the vector store yet?
Yes. It does have data in it. Abt 10 PDF's about Agrar stuff. And its fully build. Its a ChromaDB
But no matter what i ask. I get no response
Lol, I was going to say try with some other queries πŸ˜…
Gonna try sth that is defo in the PDF
still empty response
Lets try it in the building process
Can you try creating it from the start once again: https://docs.llamaindex.ai/en/stable/examples/vector_stores/ChromaIndexDemo.html#creating-a-chroma-index ?

Could be some issue in the vectors maybe
doing that rn actually
Printing response
DerProzessβ€žDΓΌngenβ€œbeinhaltetmehrereSubprozesse,dieengverzahntineinandergreifen:
β€’β€žAnbauplanenβ€œistdieVerknΓΌpfungeinerKulturartmiteinerBewirtschaftungs-
einheitineinembestimmtenZeitraum.DieKulturart,sowiedieMengeundArt
desErnteproduktesbestimmtimWesentlichendieAusbringungvonNΓ€hrstoff-
mengen.
β€’β€žBodenuntersuchungeingebenβ€œbeinhaltetdenTransfervon(teilflΓ€chenspezifischen)BodenuntersuchungsergebnissenodervonLandesbehΓΆrdenzurVerfΓΌgung
gestellteNmin-GehalteindieAnwendung.
β€’β€žDΓΌngebedarfermittelnβ€œumfasstdieBerechnungderNΓ€hrstoffmengeeinesErn-
teproduktes,diedenNΓ€hrstoffbedarfnachAbzugsonstigerverfΓΌgbarerNΓ€hr-
stoffmengenundunterBerΓΌcksichtigungderteilflΓ€chenspezifischenNΓ€hrstoffver-
sorgungdesBodensabdeckt.
β€’β€žDΓΌngebedarfdeckenβ€œisteinteilflΓ€chenspezifischerOptimierungsansatzzur
DeckungdesDΓΌngebedarfs(sieheAbb.1).
β€’β€žDΓΌngungplanenβ€œliefertalsErgebniseineernteprodukt-undteilflΓ€chenspezifischePlanungvonDΓΌngemaßnahmeninkl.Applikationskarte.
InderAnwendungmΓΌssendieProzessevomUserdurchlaufenundggf.umfehlende Informationenangereichertwerden.InAbb.1istderProzessβ€žDΓΌngebedarfdeckenβ€œ
exemplarischdargestellt.DerUser(β€žBesitzerβ€œ)wirddabeivonderAnwendung(β€žSys-
temβ€œ)durchdenProzessbegleitet.WennalleInformationenausdenvorherigenProzes-
senkorrekterfasstunddieGeschΓ€ftsregelnkorrektformuliertsind,somussderAnwen-
derlediglicheinErgebnisbestΓ€tigen.
Abb.1:AusschnittausBPMNDiagrammfΓΌrβ€žDΓΌngebedarfdeckenβ€œ
taym@tays-MacBook-Pro AiAssistant %
I mean it is right
it has no spaces between the words
Awesome !! now the response is finally coming
Yeah, You could try providing instruction to the model for how it has to generate and ask again.
Okay so, when i save the ChromaDB it doesnt work. It doesnt respond
So somethig is defo borked
Can you check, If the new file got stored in your chromaDB
Attachment
image.png
But i just tried sth
Gives me a File Exists error
Attachment
image.png
Can you try providing just ./chroma_db in the path, as this much is only mentioned in the docs
https://docs.llamaindex.ai/en/stable/examples/vector_stores/ChromaIndexDemo.html#basic-example-including-saving-to-disk
I did that and there i gave me empty response
I think you've set the context window and amx_new_tokens waaayy too big πŸ˜…

What model is this based off of?
i would try max_new_tokens=512 and context_window=3900 as a safe starting point
Its running on Em German 13b
By TheBloke I think
With the context window it hissed at me when I had it at 3900 that it can't go into the negatives
Okay i tried so many things. Nothing really works. Could it be a issue with my hardware? idfk
sorry for the ping
May have found a solution
Just sadly takes long
My solution did in fact not work.
But in the file where it was building it so it had it already.
I got this response lol:
Plain Text
DerProzessβ€žDΓΌngenβ€œbeinhaltetmehrereSubprozesse,dieengverzahntineinandergreifen:
β€’β€žAnbauplanenβ€œistdieVerknΓΌpfungeinerKulturartmiteinerBewirtschaftungs-
einheitineinembestimmtenZeitraum.DieKulturart,sowiedieMengeundArt
desErnteproduktesbestimmtimWesentlichendieAusbringungvonNΓ€hrstoff-
mengen.
β€’β€žBodenuntersuchungeingebenβ€œbeinhaltetdenTransfervon(teilflΓ€chenspezifischen)BodenuntersuchungsergebnissenodervonLandesbehΓΆrdenzurVerfΓΌgung
gestellteNmin-GehalteindieAnwendung.
β€’β€žDΓΌngebedarfermittelnβ€œumfasstdieBerechnungderNΓ€hrstoffmengeeinesErn-
teproduktes,diedenNΓ€hrstoffbedarfnachAbzugsonstigerverfΓΌgbarerNΓ€hr-
stoffmengenundunterBerΓΌcksichtigungderteilflΓ€chenspezifischenNΓ€hrstoffver-
sorgungdesBodensabdeckt.
β€’β€žDΓΌngebedarfdeckenβ€œisteinteilflΓ€chenspezifischerOptimierungsansatzzur
DeckungdesDΓΌngebedarfs(sieheAbb.1).
β€’β€žDΓΌngungplanenβ€œliefertalsErgebniseineernteprodukt-undteilflΓ€chenspezifischePlanungvonDΓΌngemaßnahmeninkl.Applikationskarte.
InderAnwendungmΓΌssendieProzessevomUserdurchlaufenundggf.umfehlende Informationenangereichertwerden.InAbb.1istderProzessβ€žDΓΌngebedarfdeckenβ€œ
exemplarischdargestellt.DerUser(β€žBesitzerβ€œ)wirddabeivonderAnwendung(β€žSys-
temβ€œ)durchdenProzessbegleitet.WennalleInformationenausdenvorherigenProzes-
senkorrekterfasstunddieGeschΓ€ftsregelnkorrektformuliertsind,somussderAnwen-
derlediglicheinErgebnisbestΓ€tigen.
Abb.1:AusschnittausBPMNDiagrammfΓΌrβ€žDΓΌngebedarfdeckenβ€œ

So no Spaces. Still didnt get it to save and make it accessible that i dont have to rebuild the DB every time i ask it sth
name='quickstart' id=UUID('0a6d6743-bbef-4f98-9897-6ff994a84a1b') metadata=None

Hmm thats the collection
The collection UUID is diff
Building DB

name='quickstart' id=UUID('560f6a12-e64b-467b-9a5f-3b4393fa160f') metadata=None

Getting DB
name='quickstart' id=UUID('0a6d6743-bbef-4f98-9897-6ff994a84a1b') metadata=None
ngl I'm way out of the loop now -- what are you doing exactly?
I copied the code entirely as the guide tells me to. Still didn't work. But I tried comparing the collection UUID's. From the file where I saved the chromadb. And then the file where I then tried getting the previously saved chromadb
In the Llama Index Docs
The sample code
For chroma?

Loading a previous chromadb is ez pz

Plain Text
# save to disk
db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
service_context = ServiceContext.from_defaults(embed_model=embed_model)
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, service_context=service_context
)

# load from disk
db2 = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db2.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
    vector_store,
    service_context=service_context,
)
this works for me
imma try it tomorrow again. I have end of work
Add a reply
Sign up and join the conversation on Discord