PGVectorStore
. In PineCone we used different indexes for different documents to limit the replies to a particular document/scope. I was wondering what the equivalent would in PGVectoreStore
. Do you recommend setting up a new table for each "context"/"namespace"?KeywordExtractor
and specified keywords=5
as a param. But yet in my postgres DB i find up to 50 keywords per document chunk. Is this normal?DocumentSummaryIndex.from_documents
and using load_index_from_storage
gpt-3.5-turbo-1106
produces significantly worse results as the old gpt-3.5-turbo-16k-0613
PyMuPDFReader = download_loader("PDFReader") loader = PyMuPDFReader() documents = loader.load_data(file=Path("./test-doc2.pdf")) # Create and store Summray index storage_context = StorageContext.from_defaults() index = DocumentSummaryIndex.from_documents( documents, service_context=service_context, storage_context=storage_context, show_progress=True, ) query_engine = index.as_query_engine() result = query_engine.query("Write an extensive summary of this context for me?") print(result)
service_context
does NOT update unless I restart the entire application, has anyone run into this issue before?set_global_service_context(service_context) vector_store = PineconeVectorStore( pinecone_index=PINECONE_INDEX, namespace=namespace ) storage_context = StorageContext.from_defaults( docstore=DOCUMENT_STORE, index_store=INDEX_STORE, vector_store=vector_store, ) print(service_context) return VectorStoreIndex.from_vector_store( vector_store=vector_store, storage_context=storage_context, service_context=service_context, )
tree-sitter-languages
and Tree Sitter doesnt have a build for Mac: https://github.com/grantjenks/py-tree-sitter-languages/issues/20