Does anyone know how to get the new OpenAI embedding model to work:
embed_model = OpenAIEmbedding(model="text-embedding-3-large", dimensions=3072)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[29], line 1
----> 1 embeddings = embed_model.get_text_embedding("Your text here")
2 print(embeddings)
File ~/anaconda3/envs/embeddings/lib/python3.11/site-packages/llama_index/core/embeddings/base.py:207, in BaseEmbedding.get_text_embedding(self, text)
196 """
197 Embed the input text.
198
(...)
202 predefined instructions can be found in embeddings/huggingface_utils.py.
203 """
204 with self.callback_manager.event(
205 CBEventType.EMBEDDING, payload={EventPayload.SERIALIZED: self.to_dict()}
206 ) as event:
--> 207 text_embedding = self._get_text_embedding(text)
209 event.on_end(
210 payload={
211 EventPayload.CHUNKS: [text],
212 EventPayload.EMBEDDINGS: [text_embedding],
213 }
214 )
216 return text_embedding
...
134 return (
--> 135 client.embeddings.create(input=[text], model=engine, **kwargs).data[0].embedding
136 )
TypeError: Embeddings.create() got an unexpected keyword argument 'dimensions'
Does the vector store automatically use the larger number (3k vs. 1.5k) of dimensions?