import tiktoken from llama_index import ( LLMPredictor, ServiceContext, set_global_service_context ) from langchain.llms import GPT4All from langchain.embeddings import GPT4AllEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler callbacks = [StreamingStdOutCallbackHandler()] local_path = "/path/to/gpt4 model/llama-2-7b-chat.ggmlv3.q4_0.bin" # Verbose is required to pass to the callback manager llm = GPT4All(model=local_path, callbacks=callbacks, backend="gptj", verbose=True) service_context = ServiceContext.from_defaults( llm_predictor=LLMPredictor(llm=llm), embed_model=GPT4AllEmbeddings() ) # set the global default! set_global_service_context(service_context)
ValueError Traceback (most recent call last) /tmp/ipykernel_83194/1998556855.py in <module> 53 # ) 54 ---> 55 service_context = ServiceContext.from_defaults( 56 llm_predictor=llm_predictor, ~/anaconda3/lib/python3.10/site-packages/llama_index/indices/service_context.py in from_defaults(cls, llm_predictor, llm, prompt_helper, embed_model, node_parser, llama_logger, callback_manager, chunk_size, chunk_overlap, context_window, num_output, chunk_size_limit) 163 # NOTE: the embed_model isn't used in all indices 164 embed_model = embed_model or OpenAIEmbedding() --> 165 embed_model.callback_manager = callback_manager 166 167 prompt_helper = prompt_helper or _get_default_prompt_helper( ~/.local/lib/python3.10/site-packages/pydantic/main.cpython-310-x86_64-linux-gnu.so in pydantic.main.BaseModel.__setattr__() ValueError: "GPT4AllEmbeddings" object has no field "callback_manager"
from llama_index.prompts.prompts import SimpleInputPrompt DEFAULT_SIMPLE_INPUT_TMPL = ( "{query_str} \n" "by using words 'permission'" ) DEFAULT_SIMPLE_INPUT_PROMPT = SimpleInputPrompt(DEFAULT_SIMPLE_INPUT_TMPL) retriever = VectorIndexRetriever( index=index, similarity_top_k=10, vector_store_query_mode=VectorStoreQueryMode.HYBRID ) response_synthesizer = ResponseSynthesizer.from_args( streaming=True, service_context=service_context, simple_template = DEFAULT_SIMPLE_INPUT_PROMPT ) query_engine = RetrieverQueryEngine( retriever=retriever, response_synthesizer=response_synthesizer, ) query_engine = index.as_query_engine( streaming=True, simple_template = DEFAULT_SIMPLE_INPUT_PROMPT ) response = query_engine.query(query_str)
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
LOGGING: DEBUG:llama_index.indices.response.response_builder:> Initial prompt template: Context information is below. --------------------- {context_str} --------------------- Given the context information and not prior knowledge, answer the question: {query_str}
print(vars(response_synthesizer._response_builder)) {'_service_context': , '_streaming': , 'text_qa_template': <llama_index.prompts.prompts.QuestionAnswerPrompt at 0x7fde16b0dfc0>, '_refine_template': <llama_index.prompts.prompts.SimpleInputPrompt at 0x7fde09d6bd90>}
QA_PROMPT_TMPL = ( "We have provided context information below. \n" "---------------------\n" "{context_str}" "\n---------------------\n" "Given this information, please answer the question: {query_str}\n" ) QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL) query_engine = index.as_query_engine(streaming=True, similarity_top_k=10, text_qa_template=QuestionAnswerPrompt) response = query_engine.query(query_str) OUTPUT ERROR: TypeError: Prompt.partial_format() missing 1 required positional argument: 'self'
agent = OpenAIAgent.from_tools( [multiply_tool, add_tool], llm=llm, verbose=True, callback_manager=callback_manager ) response = agent.chat("your_query") OUTPUT ERROR: JSONDecodeError Traceback (most recent call last) /tmp/ipykernel_85164/1112129131.py in <module> ----> 1 response = agent.chat("a ate 2 apples, b ate 9 apples and c ate 1 apples. I apple cost is 7.8. how much total cost will be") 2 print('response = ',response) ~/anaconda3/lib/python3.10/site-packages/llama_index/agent/openai_agent.py in chat(self, message, chat_history, function_call) 143 break 144 --> 145 function_message, tool_output = call_function( 146 tools, function_call_, verbose=self._verbose 147 ) ~/anaconda3/lib/python3.10/site-packages/llama_index/agent/openai_agent.py in call_function(tools, function_call, verbose) 41 print(f"Calling function: {name} with args: {arguments_str}") 42 tool = get_function_by_name(tools, name) ---> 43 argument_dict = json.loads(arguments_str) 44 output = tool(**argument_dict) 45 if verbose: . . . ~/anaconda3/lib/python3.10/json/decoder.py in raw_decode(self, s, idx) 351 """ 352 try: --> 353 obj, end = self.scan_once(s, idx) 354 except StopIteration as err: 355 raise JSONDecodeError("Expecting value", s, err.value) from None JSONDecodeError: Expecting ',' delimiter: line 2 column 14 (char 15)
query_engine = index.as_query_engine() response = query_engine.query(query)
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) /tmp/ipykernel_113122/3918986344.py in <module> 1 query_engine = index.as_query_engine() ----> 2 respons = query_engine.query(query) . . . . . ~/.local/lib/python3.10/site-packages/llama_index/data_structs/node.py in __post_init__(self) 64 # NOTE: for Node objects, the text field is required 65 if self.text is None: ---> 66 raise ValueError("text field not set.") 67 68 if self.node_info is None: ValueError: text field not set.
from llama_index.agent import OpenAIAgent agent = OpenAIAgent.from_tools(query_engine_tools, verbose=True, llm=llm) agent.chat_repl() OUTPUT ERROR: ===== Entering Chat REPL ===== Type "exit" to exit. Human: when parliament building inaugurated === Calling Function === Calling function: new_parmialment with args: { "input": "When was the parliament building inaugurated?" } --------------------------------------------------------------------------- AuthenticationError Traceback (most recent call last) . . . . AuthenticationError: No API key provided. You can set your API key in code using 'openai.api_key = <API-KEY>', or you can set the environment variable OPENAI_API_KEY=<API-KEY>). If your API key is stored in a file, you can point the openai module at it with 'openai.api_key_path = <PATH>'. You can generate API keys in the OpenAI web interface. See https://platform.openai.com/account/api-keys for details, or email support@openai.com if you have any questions. The above exception was the direct cause of the following exception: RetryError Traceback (most recent call last) . . . . RetryError: RetryError[<Future at 0x7fd9199b00a0 state=finished raised AuthenticationError>]
from llama_index import download_loader GoogleDriveReader = download_loader('GoogleDriveReader') loader = GoogleDriveReader() documents = loader.load_data(file_ids=['file_id']) OUTPUT: TypeError: GoogleDriveReader._load_from_file_ids() takes 2 positional arguments but 3 were given
from llama_index import GPTListIndex, NotionPageReader from IPython.display import Markdown, display import os integration_token = 'notion_integration_token' page_ids = ["page_id"] notion_reader = NotionPageReader(integration_token=integration_token) documents = notion_reader.read_page(page_id=page_ids) OUTPUT: ~/.local/lib/python3.10/site-packages/llama_index/readers/notion.py in _read_block(self, block_id, num_tabs) 58 data = res.json() 59 ---> 60 for result in data["results"]: 61 result_type = result["type"] 62 result_obj = result[result_type] KeyError: 'results'
from llama_index import StorageContextload_index_from_storage from llama_index.readers import WeaviateReader from llama_index.vector_stores import WeaviateVectorStore documents = SimpleDirectoryReader('test_doc').load_data() storage_context = StorageContext.from_dict()
storage_context = StorageContext.from_dict( vector_store=WeaviateVectorStore(weaviate_client=weaviate_client), )
TypeError: StorageContext.from_dict() got an unexpected keyword argument 'vector_store'
storage_context = StorageContext.from_defaults( vector_store=WeaviateVectorStore(weaviate_client=weaviate_client), ) index = GPTVectorStoreIndex.from_documents(documents, storage_context=storage_context,service_context=service_context) index.storage_context.to_dict() ValueError: to_dict only available when using simple doc/index/vector stores