Hi, I use the following code to get the two most relevant nodes. I can also get the metadata information. But how do I get the embedding vector of relevant nodes?
import chromadb
from llama_index.core.storage.storage_context import StorageContext
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import (
Document,
VectorStoreIndex,
Settings
)
documents = Document(
text=text,
metadata={
'filename': file_name,
'keyword': keyword,
}
)
...
vector_store = ChromaVectorStore(chroma_collection=collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
Settings.embed_model = HuggingFaceEmbedding(model_name='BAAI/bge-large-zh-v1.5')
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
Settings=Settings
)
...
retriever = index.as_retriever(similarity_top_k=3)
relevant_nodes = retriever.retrieve("my query")
I try to get vector:
relevant_nodes[0].get_embedding()
# Output
raise ValueError("embedding not set.")
ValueError: embedding not set.