text=d["questions_this_excerpt_can_answer"], ~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ KeyError: 'questions_this_excerpt_can_answer'
extractors = [ SummaryExtractor(summaries=["self"], show_progress=True, llm=llm), QuestionsAnsweredExtractor(questions=5, show_progress=True, llm=llm), ] metadata_dicts = [] for extractor in extractors: metadata_dicts.extend(extractor.extract(nodes)) all_nodes = copy.deepcopy(nodes) for idx, d in enumerate(metadata_dicts): inode_q = IndexNode( text=d["questions_this_excerpt_can_answer"], index_id=nodes[idx].node_id, ) inode_s = IndexNode(text=d["section_summary"], index_id=nodes[idx].node_id) all_nodes.extend([inode_q, inode_s])
vector_store = get_chroma_vector_store(path) embed_model = resolve_embed_model("local:BAAI/bge-small-en-v1.5") service_context = ServiceContext.from_defaults(llm=None, embed_model=embed_model) index = VectorStoreIndex.from_vector_store( vector_store, service_context=service_context, ) retriever = index.as_retriever(similarity_top_k=5)
index = load_index_from_storage(storage_context, service_context=service_context)
node_dict
to pass into the RecursiveRetriever constructor:retriever_chunk = RecursiveRetriever( "vector", retriever_dict={"vector": vector_retriever_chunk}, node_dict=all_nodes_dict, verbose=True, )