Find answers from the community

w
wodka
Offline, last seen 4 months ago
Joined September 25, 2024
Hi, I'm having an issue when trying to use a vector index with the SubQuestionEngine - It is always erroring :/

Plain Text
import os
import openai

os.environ['OPENAI_API_KEY'] = "sk-***"
openai.api_key = os.environ["OPENAI_API_KEY"]

from llama_index import Document, SummaryIndex, VectorStoreIndex, SimpleDirectoryReader
from llama_index.tools import QueryEngineTool, ToolMetadata
from llama_index.query_engine import SubQuestionQueryEngine
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
from llama_index import ServiceContext
from llama_index.question_gen.llm_generators import LLMQuestionGenerator


from qdrant_client import QdrantClient
from llama_index.vector_stores.qdrant import QdrantVectorStore

# Using the LlamaDebugHandler to print the trace of the sub questions
# captured by the SUB_QUESTION callback event type
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
service_context = ServiceContext.from_defaults(
    callback_manager=callback_manager
)

vector_index = VectorStoreIndex.from_documents(
    documents=[
        Document(text="whe have the color green for trees")
    ], 
    service_context=service_context
)
vector_query_engine = vector_index.as_query_engine()

# setup base query engine as tool
query_engine_tools = [
    QueryEngineTool(
        query_engine=vector_query_engine,
        metadata=ToolMetadata(
            name="tree_colors",
            description="Everything around trees",
        ),
    ),
]

query_engine = SubQuestionQueryEngine.from_defaults(
    query_engine_tools=query_engine_tools,
    service_context=service_context,
    question_gen=LLMQuestionGenerator.from_defaults(
        service_context=service_context
    )
)

response = query_engine.query(
    "What is the color for trees?"
)

print(response)

return msg
20 comments
X
L
w