index
in the code snippet you provided is an instance of the VectorStoreIndex
class from the LlamaIndex library. This class is used to create and manage an index of vectors, which can be used for efficient similarity search and retrieval of data.from llama_index import load_index_from_storage, StorageContext # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="storage") # load index index = load_index_from_storage(storage_context)
load_index_from_storage
is a function that loads an index from a storage context. The storage context is created with the StorageContext.from_defaults
method, which sets up the storage context with default settings and a specified persist_dir
.index
.index
in an API call, you would typically need to serialize it into a format that can be transmitted over the network, such as JSON. However, the VectorStoreIndex
object from LlamaIndex is a complex object that includes methods and may not be directly serializable.index
on the server side. For example, you could create an endpoint that accepts a query, uses the index
to find relevant results, and then returns these results in the API response.from flask import Flask, request, jsonify from llama_index import load_index_from_storage, StorageContext app = Flask(__name__) # Load the index storage_context = StorageContext.from_defaults(persist_dir="storage") index = load_index_from_storage(storage_context) @app.route('/query', methods=['POST']) def query_index(): # Get the query from the request query = request.json.get('query') # Use the index to find relevant results results = index.query(query) # Return the results in the response return jsonify(results)
/query
endpoint with a JSON body that includes the query. The endpoint uses the index
to find relevant results and returns these in the response.index
has a query
method that accepts a string and returns results. The actual method you need to use may be different depending on the specifics of the VectorStoreIndex
class.VectorStoreIndex
class, you can refer to the LlamaIndex documentation (). For more information on creating APIs with Flask, you can refer to the Flask documentation ().VectorStoreIndex
and store these in a dictionary or similar data structure. Then, in your API endpoints, you could accept an additional parameter specifying which project to use.from flask import Flask, request, jsonify from llama_index import load_index_from_storage, StorageContext app = Flask(__name__) # Load the indexes for each project indexes = { 'project1': load_index_from_storage(StorageContext.from_defaults(persist_dir="storage1")), 'project2': load_index_from_storage(StorageContext.from_defaults(persist_dir="storage2")), # Add more projects as needed } @app.route('/query', methods=['POST']) def query_index(): # Get the project and query from the request project = request.json.get('project') query = request.json.get('query') # Get the index for the specified project index = indexes.get(project) if index is None: return jsonify({'error': 'Invalid project'}), 400 # Use the index to find relevant results results = index.query(query) # Return the results in the response return jsonify(results)
/query
endpoint with a JSON body that includes the project and the query. The endpoint uses the appropriate index
to find relevant results and returns these in the response.index
has a query
method that accepts a string and returns results. The actual method you need to use may be different depending on the specifics of the VectorStoreIndex
class.VectorStoreIndex
class, you can refer to the LlamaIndex documentation (). For more information on creating APIs with Flask, you can refer to the Flask documentation ().load_index_from_storage
function. from llama_index import load_index_from_storage, StorageContext # rebuild storage context storage_context = StorageContext.from_defaults(persist_dir="storage") # load index index = load_index_from_storage(storage_context)
load_index_from_storage
is a function that loads an index from a storage context. The storage context is created with the StorageContext.from_defaults
method, which sets up the storage context with default settings and a specified persist_dir
.VectorStoreIndex
class and the load_index_from_storage
function, you can refer to the LlamaIndex documentation ().