----------------------
To load an existing Pinecone index, you can follow these steps:
- Import the necessary libraries and initialize Pinecone with your API key:
from gpt_index import GPTPineconeIndex, SimpleDirectoryReader
import pinecone
api_key = "<api_key>"
pinecone.init(api_key=api_key, environment="us-west1-gcp")
- Load the existing Pinecone index:
index_name = "quickstart" # Replace with your index name
pinecone_index = pinecone.Index(index_name)
- Load your documents using
SimpleDirectoryReader
:
documents = SimpleDirectoryReader('../paul_graham_essay/data').load_data()
- Create a
GPTPineconeIndex
instance using the loaded Pinecone index:
index = GPTPineconeIndex(documents, pinecone_index=pinecone_index)
Now you can use the
index
object to query the existing Pinecone index without recreating it each time.
Source:
Pinecone Index Construction/Querying (
https://gpt-index.readthedocs.io/en/latest/how_to/integrations/vector_stores.html#using-a-vector-store-as-an-index)
----------------------
Note: you can ask me a follow up question by @ mentioning me again
:speech_balloon:
----------------------