Find answers from the community

Updated 3 months ago

How does llama_index handle default lanchain prompt when using intialize_agent

How does llama_index handle default lanchain prompt when using intialize_agent
k
c
17 comments
Please stand by @cK5150 as I search the knowledge base. We are experiencing especially high traffic right now and might take longer than usual. :wave:
----------------------
llama_index provides a function called create_llama_agent that acts as a light wrapper around the initialize_agent function in langchain. This function is used to load an agent executor given a Llama Toolkit and LLM (Language Model). The create_llama_agent function accepts an optional agent parameter, which is a string specifying the agent type to use. If both agent and agent_path are None, it will default to the zero-shot-react-description agent type.

Here's the function signature for create_llama_agent:

Plain Text
gpt_index.langchain_helpers.agents.create_llama_agent(
    toolkit: LlamaToolkit,
    llm: BaseLLM,
    agent: Optional[AgentType] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    agent_path: Optional[str] = None,
    agent_kwargs: Optional[dict] = None,
    **kwargs: Any
) -> AgentExecutor


However, the provided information extracts do not specifically mention how llama_index handles default langchain prompts when using initialize_agent. For more details, you may want to refer to the Llama Index documentation (https://gpt-index.readthedocs.io/en/latest/) or the GitHub repository (https://github.com/jerryjliu/llama_index).
----------------------
Note: you can ask me a follow up question by @ mentioning me again :speech_balloon:
----------------------
@kapa.ai can a custom agent be used in this wrapper
Let me check the knowledge base for you. One moment! :books:
----------------------
Yes, you can use a custom agent with the create_llama_agent wrapper function provided by llama_index. To do this, you can pass the custom agent type as a string to the agent parameter when calling the function. The available agent types are:

  • zero-shot-react-description
  • react-docstore
  • self-ask-with-search
  • conversational-react-description
  • chat-zero-shot-react-description
  • chat-conversational-react-description
Here's the function signature for create_llama_agent:

Plain Text
gpt_index.langchain_helpers.agents.create_llama_agent(
    toolkit: LlamaToolkit,
    llm: BaseLLM,
    agent: Optional[AgentType] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    agent_path: Optional[str] = None,
    agent_kwargs: Optional[dict] = None,
    **kwargs: Any
) -> AgentExecutor


If you want to use a custom agent that is not listed in the available agent types, you can provide the path to the serialized custom agent using the agent_path parameter.

For more information, refer to the Llama Index documentation (https://gpt-index.readthedocs.io/en/latest/reference/langchain_integrations/base.html).
----------------------
Note: you can ask me a follow up question by @ mentioning me again :speech_balloon:
----------------------
@kapa.aishow me a example of using crea_llama_agent
Let me check the knowledge base for you. One moment! :books:
----------------------
I'm sorry, but the provided information extracts do not contain a direct example of using the create_llama_agent function. However, I can show you the function signature and parameters:

Plain Text
gpt_index.langchain_helpers.agents.create_llama_agent(
    toolkit: LlamaToolkit,
    llm: BaseLLM,
    agent: Optional[AgentType] = None,
    callback_manager: Optional[BaseCallbackManager] = None,
    agent_path: Optional[str] = None,
    agent_kwargs: Optional[dict] = None,
    **kwargs: Any
) -> AgentExecutor


For more information and examples, you can refer to the Llama Index documentation (https://gpt-index.readthedocs.io/en/latest/reference/langchain_integrations/base.html).
----------------------
Note: you can ask me a follow up question by @ mentioning me again :speech_balloon:
----------------------
@kapa.ai show me create_llama_chat_agent
Let me check the knowledge base for you. One moment! :books:
----------------------
Here's an example of using the create_llama_chat_agent function from the provided information extracts:

Plain Text
from gpt_index.langchain_helpers.agents import create_llama_chat_agent
from gpt_index.langchain_helpers.memory_wrapper import ConversationBufferMemory
from gpt_index.langchain_helpers.llm import OpenAI

memory = ConversationBufferMemory(memory_key="chat_history")
llm = OpenAI(temperature=0)

agent_chain = create_llama_chat_agent(
    toolkit,
    llm,
    memory=memory,
    verbose=True
)


In this example, a ConversationBufferMemory is created to store the chat history, and an OpenAI instance is created as the language model. The create_llama_chat_agent function is then called with the toolkit, llm, and memory parameters to create a Langchain chatbot agent.

For more information, refer to the Llama Index documentation (https://gpt-index.readthedocs.io/en/latest/guides/tutorials/building_a_chatbot.html).
----------------------
Note: you can ask me a follow up question by @ mentioning me again :speech_balloon:
----------------------
@kapa.ai show me llama toolkit
Let me check the knowledge base for you. One moment! :books:
----------------------
Here's an example of creating a LlamaToolkit using the IndexToolConfig and GraphToolConfig from the provided information extracts:

Plain Text
from llama_index.langchain_helpers.agents import LlamaToolkit, IndexToolConfig, GraphToolConfig

# Define toolkit
index_configs = []
for y in range(2019, 2023):
    tool_config = IndexToolConfig(
        index=index_set[y], 
        name=f"Vector Index {y}",
        description=f"useful for when you want to answer queries about the {y} SEC 10-K for Uber",
        index_query_kwargs={"similarity_top_k": 3},
        tool_kwargs={"return_direct": True}
    )
    index_configs.append(tool_config)

graph_config = GraphToolConfig(
    graph=graph,
    name=f"Graph Index",
    description="useful for when you want to answer queries that require analyzing multiple SEC 10-K documents for Uber.",
    query_configs=query_configs,
    tool_kwargs={"return_direct": True}
)

toolkit = LlamaToolkit(
    index_configs=index_configs,
    graph_configs=[graph_config]
)


In this example, IndexToolConfig objects are created for each index (corresponding to a given year), and a GraphToolConfig object is created for the graph. These configurations are then combined into a LlamaToolkit.

For more information, refer to the Llama Index documentation (https://gpt-index.readthedocs.io/en/latest/guides/tutorials/building_a_chatbot.html).
----------------------
Note: you can ask me a follow up question by @ mentioning me again :speech_balloon:
----------------------
@kapa.ai take this langchain tool and integrate it into llama
Let me check the knowledge base for you. One moment! :books:
@cK5150 That's a great question, but unfortunately I am only capable of responding to a maximum of three questions per thread. Don't hesitate to create a new thread for any further questions you have though. I'm here to help!
Add a reply
Sign up and join the conversation on Discord