----------------------
Certainly! The
GPTPineconeIndex
is a data structure where nodes are keyed by embeddings, and those embeddings are stored within a Pinecone index. During index construction, the document texts are chunked up, converted to nodes with text, and then encoded in document embeddings stored within Pinecone.
Here are the parameters for the
GPTPineconeIndex
:
documents
: The documents you want to index.pinecone_index
: The Pinecone index instance.metadata_filters
: Optional dictionary for filtering metadata.pinecone_kwargs
: Optional dictionary for Pinecone index kwargs (deprecated).insert_kwargs
: Optional dictionary for insert kwargs during upsert call.query_kwargs
: Optional dictionary for query kwargs during query call.delete_kwargs
: Optional dictionary for delete kwargs during delete call.
To create a
GPTPineconeIndex
, you can use the following code snippet:
from gpt_index import GPTPineconeIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader('../paul_graham_essay/data').load_data()
index = GPTPineconeIndex(documents, pinecone_index=index)
For more information, you can refer to the
GPT index documentation on vector store index (
https://gpt-index.readthedocs.io/en/latest/reference/indices/vector_store.html) and the
example notebooks (
https://github.com/jerryjliu/gpt_index/tree/main/examples/vector_indices/PineconeIndexDemo.ipynb).
----------------------
Note: you can ask me a follow up question by @ mentioning me again
:speech_balloon:
----------------------