2023-08-08 21:00:39,182 WARNING dataset.py:4390 -- The map, flat_map, and filter operations are unvectorized and can be very slow. If you're using a vectorized transformation, consider using .map_batches() instead. 2023-08-08 21:00:39,186 INFO streaming_executor.py:91 -- Executing DAG InputDataBuffer[Input] -> TaskPoolMapOperator[FlatMap->FlatMap] -> ActorPoolMapOperator[MapBatches(EmbedNodes)] 2023-08-08 21:00:39,187 INFO streaming_executor.py:92 -- Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=None), locality_with_output=False, preserve_order=False, actor_locality_enabled=True, verbose_progress=False) 2023-08-08 21:00:39,187 INFO streaming_executor.py:94 -- Tip: For detailed progress reporting, run ray.data.DataContext.get_current().execution_options.verbose_progress = True 2023-08-08 21:00:39,205 INFO actor_pool_map_operator.py:114 -- MapBatches(EmbedNodes): Waiting for 4 pool actors to start... Running: 0.0/48.0 CPU, 0.0/4.0 GPU, 0.0 MiB/3.48 GiB object_store_memory: 0%| | 0/200 [00:03<?, ?it/s]2023-08-08 21:00:47,755 INFO streaming_executor.py:149 -- Shutting down <StreamingExecutor(Thread-4, stopped daemon 140500325627648)>. 2023-08-08 21:00:47,756 WARNING actor_pool_map_operator.py:264 -- To ensure full parallelization across an actor pool of size 4, the specified batch size should be at most 0. Your configured batch size for this operator was 100. Storing Ray Documentation embeddings in vector index.