Hi, I'm trying to do multi-modal RAG like this:
text_store = LanceDBVectorStore(uri="lancedb", table_name="text_collection")
image_store = LanceDBVectorStore(uri="lancedb", table_name="image_collection")
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
index = MultiModalVectorStoreIndex.from_vector_store(
vector_store=text_store,
embed_model=HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5"), # dim = 1024
image_vector_store=image_store,
image_embed_model=ClipEmbedding(model_name="ViT-L/14") # dim = 768
)
retriever_engine = index.as_retriever(
similarity_top_k=2, image_similarity_top_k=2
)
But when I do retrieval, it raises
ValueError: Query vector size 1024 does not match index column size 768
How can I modify the dimension for each vector store? I can't find the args for that. Thanks in advance.