Token indices sequence length is longer than the specified maximum sequence length for this model (1043 > 512). Running this sequence through the model will result in indexing errors
print(service_context.chunk_size_limit) Output: 1024
512
is the max input size. Are you using a custom LLM anywhere?hf_predictor = HuggingFaceLLMPredictor( max_input_size=2048, max_new_tokens=256, temperature=0.25, do_sample=False, query_wrapper_prompt=query_wrapper_prompt, tokenizer_name="Writer/camel-5b-hf", model_name="Writer/camel-5b-hf", device_map="auto", tokenizer_kwargs={"max_length": 2048}, model_kwargs={"torch_dtype": torch.bfloat16} )
512
as the chunk sizeembed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")) service_context = ServiceContext.from_defaults(chunk_size_limit=1024, llm_predictor=hf_predictor, embed_model=embed_model)
0.6.15
as new version has some changes for vector store names which I havent updated in the code currently. But it started to break at this point