pip install llama-index-postprocessor-tei-rerank
from llama_index.postprocessor.tei_rerank import TextEmbeddingInference as TEIR reranker = TEIR(...)
inputs
must have less than 512 tokens. Given: 518'top_k = 25 vector_retriever = index.as_retriever(similarity_top_k=top_k) bm25_retriever = BM25Retriever.from_defaults(docstore=index.docstore, similarity_top_k=top_k) retriever = QueryFusionRetriever( [vector_retriever, bm25_retriever], retriever_weights=[0.6, 0.4], similarity_top_k=top_k, num_queries=1, mode='relative_score', verbose=True, )
QueryFusionRetriever
with a a regular ol' VectorStoreIndex...as_query_engine()
.llama_index.postprocessor.tei_rerank.TextEmbeddingInference
sets truncate_text
on its parent class, BaseNodePostprocessor
. I don't think TEI is respondible for truncation here.