response_generator = self.agent.stream_chat(message=messages[-1].content, chat_history=messages[:-1]).chat_stream for token in response_generator: yield token
ValueError: generator already executing
response_gen
instead of chat_stream
it's working flawless. However, i truly need that ChatResponse
objectsVectorStoreIndex.from_documents()
? I have single JSON ~140mb and it spend 50min on generating index on google colab, before i interrupted it. Now i try to run locally and already 10min of executing. What is the common time it take to generate index?response.tool_calls
list is empty, and when listening to the stream of events, I never see the ToolCallResult being output.peek
into my chromadb after indexing a handful of sample documents, it returns an empty dict as follows: {'ids': [], 'embeddings': array([], dtype=float64), 'documents': [], 'uris': None, 'data': None, 'metadatas': [], 'included': [<IncludeEnum.embeddings: 'embeddings'>, <IncludeEnum.documents: 'documents'>, <IncludeEnum.metadatas: 'metadatas'>]}
. When I print my docstore from index.docstore.docs, it states that I do have documents. I've been debugging it for a bit, playing around with persist paths and other configs but I can't seem to find where the problem resides@step async def ask(self, ev: StartEvent) -> StopEvent | None: obj_index = ev.get("obj_index") query = ev.get("query") chat_store = ev.get("chat_store") user = ev.get("user") if not obj_index or not query: return None user_file = f"./conversations/{user}.json" if not os.path.exists(user_file): chat_store = SimpleChatStore() else: chat_store = SimpleChatStore.from_persist_path(persist_path=user_file) chat_memory = ChatMemoryBuffer.from_defaults( token_limit=3000, chat_store=chat_store, chat_store_key=user, ) top_agent = OpenAIAgent.from_tools( tool_retriever=obj_index.as_retriever(similarity_top_k=3), system_prompt=PROMPT, memory=chat_memory, verbose=True, ) response = top_agent.query(query) chat_store.persist(persist_path=user_file) return StopEvent(result={"response": response, "source_nodes": response.source_nodes})
from llama_index.llms.openai_like import OpenAILike llm = OpenAILike( model="model", api_key="Key", api_base="OpenAI Compatible endpoint", context_window=16000, is_chat_model=True, is_function_calling_model=False, ) Settings.embed_model = llm # Create index index = VectorStoreIndex.from_documents( documents, show_progress=True)
1AssertionError Traceback (most recent call last) Cell In[22], line 31 22 documents = SimpleDirectoryReader("../data", required_exts=[".txt"]).load_data() 23 #embed_model = llm 24 25 (...) 29 # api_base="http://tentris-ml.cs.upb.de:8502/v1" 30 # ) ---> 31 Settings.embed_model = llm 33 # Create index 34 index = VectorStoreIndex.from_documents( 35 documents, 36 show_progress=True) File c:\Users\KUNJAN SHAH\AppData\Local\Programs\Python\Python311\Lib\site-packages\llama_index\core\settings.py:74, in _Settings.embed_model(self, embed_model) 71 @embed_model.setter 72 def embed_model(self, embed_model: EmbedType) -> None: 73 """Set the embedding model.""" ---> 74 self._embed_model = resolve_embed_model(embed_model) File c:\Users\KUNJAN SHAH\AppData\Local\Programs\Python\Python311\Lib\site-packages\llama_index\core\embeddings\utils.py:136, in resolve_embed_model(embed_model, callback_manager) 133 print("Embeddings have been explicitly disabled. Using MockEmbedding.") 134 embed_model = MockEmbedding(embed_dim=1) --> 136 assert isinstance(embed_model, BaseEmbedding) 138 embed_model.callback_manager = callback_manager or Settings.callback_manager 140 return embed_model